

No.:

Il Semester M.Sc. Degree (CBSS – Reg./Suppl./Imp.) Examination,
October 2021
(2018 Admission Onwards)
MATHEMATICS

MAT3C12: Functional Analysis

· 3 Hours

Max. Marks: 80

PART - A

wer four questions from this Part. Each question carries 4 marks.

Give an example of an element in I1 but not in c00 and prove your claim.

Explain Riesz lemma for the normed space \mathbb{R}^2 and its subspace $\{(x, x) \in \mathbb{R}^2\}$ geometrically.

Show that the norms $||.||_2$ and $||.||_{\infty}$ on K^n , n = 1, 2, ... are equivalent.

Show that c₀₀ is not a Banach space.

Show that a closed map need not be continuous.

Let $H = I^2$ and for n = 1, 2, ... and $u_n = (0, ..., 0, 1, 0, 0, ...)$ where 1 occurs only in the n^{th} entry. Show that $\{u_n : n = 1, 2, ...\}$ is an orthonormal basis for H.

PART - B

swer 4 questions from this Part without omitting any Unit. Each question carries marks.

Unit - I

- a) Define L^p space for $1 \le p \le \infty$.
- b) Let Y be a closed subspace of a normed space X. For x + Y in the quotient space X/Y let $|||x + Y||| = \inf\{||x + y|| : y \in Y\}$. Then prove that |||.||| is a norm on X/Y. Also shows that a sequence $x_n + Y$) converges to x + Y in X/Y if and only if there is a sequence (y_n) in Y such that $(x_n + y_n)$ converges to x in X.

K21P 1069

- 8. a) Let ||.|| and ||.||' be norms on a linear space X. Then prove that the norm ||.|| is stronger than the norm ||.||' if and only if there is some $\alpha > 0$ such that $||x||' \le \alpha ||x||$ for all $x \in X$.
 - b) Let X and Y be normed spaces and F: X → Y be a linear map such that the range R(F) of F is finite dimensional. Then prove that F is continuous if and only if the zero space Z(F) of F is closed in X.
- 9. a) Let X be a linear space over \mathbb{C} . Regarding X as a linear space over \mathbb{R} consider a real linear functional $u: X \to \mathbb{R}$. Define f(x) = u(x) iu(ix), $x \in X$. Then prove that f is a complex linear functional on X.
 - b) State and prove Hahn-Banach extension theorem.

Unit - II

- 10. a) State and prove Uniform boundedness principle.
 - b) State closed graph theorem.
- 11. a) Show that the closed graph theorem may not hold if the domain of the linear map is not a Banach space.
 - b) Let X and Y be normed spaces and F: X \rightarrow Y be linear. Then prove the F is an open map if and only if there exists some $\gamma > 0$ such that for every $y \in Y$, there is some $x \in X$ with F(x) = y and $||x|| \le \gamma ||y||$.
- 12. a) Prove that there are scalars $k_n \in K$, $n=0,\pm 1,\pm 2,...$ such that $k_n \to 0$ and $n\to \pm \infty$, but there is no $x\in L^1([-\pi,\pi])$ such that $\hat x=k_n$ for all $n=0,\pm 1,\pm 2,\cdots$
 - b) State two norm theorem.

Unit - III

- 13. a) State and prove Schwarz inequality.
 - b) Let $\{u_{\alpha}\}$ be an orthonormal set in an innerproduct space X and $x \in X$. Let $E_{\alpha} = \{u_{\alpha} : \langle x, u_{\alpha} \rangle \neq 0\}$. Then prove that E_{α} is a countable set. Also prove that $\langle x, u_{\alpha} \rangle \rightarrow 0$ as $n \rightarrow \infty$ if E_{α} is a denumerable set.
- 14. a) Let E be an orthogonal subset of X and $0 \notin E$. Then prove that E is independent. Also prove that $||x - y|| = \sqrt{2}$ for all $x \ne y$ in E if E is orthonormal.
 - b) State and prove projection theorem.
- 15. a) Define weak boundedness and give an example.
 - b) Prove that a subset of a Hilbert space is weak bounded if and only it is bounded.